Chapter 3

Rotations

3.1 Rotation operators

Consider two Cartesian coordinate systems C and C’ that share the same origin but
are rotated with respect to each other. If one want to rotate C into C’, three successive

rotations are usually needed. With the Euler angles w = a3, the three rotations can

be defined as
i)  Rotate C by v about its z-axis

ii) Rotate C by 8 about its y-axis (i.e. about the original y-axis)

iii) Rotate C by « about its z-axis, (i.e. the same axis as in i)),
or in terms rotation matrices

cosy sinvy 0 cosff 0 —sinf
—siny cosy 0 0 1 0 X
0 0 1 sin3@ 0 cospf
cosa sina 0 x x'
—sina cosa 0 y | =19 (3.1)
0 0 1 z Z'

To derive an expression for the rotation operator D(w) we recall the definition L =
—ihr x V. Expressing L in spherical coordinates we get

L, = ih(singo%ﬁLcotHcoscpai)
¥

. 0 .0
L, = ih(—cos Yag + cot @ sin w%)
0
L, = —ih— 3.2

For a small rotation of an arbitrary function f(7) around the z-axis we obtain

D.(AQ)f(F) = f(r. 0,0 — Ap) = f(r,0,0) —Aw% f +0(Ap)? (3.3)

—_——
—i/hRAL,
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and
D.(Ag) = 1= 2A¢L. +O(Ap)” (3.4)
Performing n successive infinitesimal rotations, letting n — oo and Ay — 0, we get
using Eq. (3.4)
6 6 © (—LfL,)*
1100 oy =y IOEE

D.(0)f = L0
exp(—%ﬁLz) f (3.5)

= 1m —
Ap—0,n—00,nAp=0 n

Because the function f(7) is an arbitrary function we have the following relation

D.(0) = 3 THEE — exp- Lo (3.6)

Interestingly enough we will now see that Eq. (3.6) leads to the commutation relations
[Li, L;] = ihe;jeLly. To show this we recall the rotation matrices and consider the
infinitesimal rotation e

cosf —sinf 0
R,(#) = | sinf cosf O (3.7)
0 0 1

Expanding to O(e?)

1—¢€*/2 —€ 0
R,(¢) = ( € 1—¢€%/2 0 ) +O(e%) (3.8)
0 0 1
1—¢€%/2 0 €
R,(€) = ( 0 1 0 ) + O(e%) (3.9)
- 0 1-¢€%/2
1 0 0
R.(e) = ( 0 1—¢2/2 —€ ) +O(e%) (3.10)
0 € 1—¢€*/2

Forming

0 —€ 0
R;(€)Ry(e) — Ry(e)Ry(e) = ( e 0 0 ) =R,() -1 (3.11)
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Eq. (3.11) tells us how the commutation relations look for rotations about different
axis. The operator analogue to Eq. (3.11) is , using Eq. (3.6) and expanding to O(€®)

(1= iLae/h— L2 /B2 + O(e*)) (1 — iLye/h — L€ /h* + O(€®)) —
(1= iLye/h — L2¢2/B> + O(€")) (1 — iLae/h — L2 /1 + O(€*)) =
1—iL,e/h+0() — 1 (3.12)

This expression easily simplifies to

[Ly, Ly| =ihL, (3.13)
or

[Li, L;] = ihe;ju Ly (3.14)

Eq. (3.6) resulted in the commutation relations Eq. (3.14) and it is therefore safe to
use the more general definition

D.(6) = exp(—%@Jz) (3.15)
|jm) is an eigenket to J, with eigenvalue mh, thus

D.(0)m) = 3= CHE ) = 3% S ) = exp(cim ) (3.1
We conclude

D(w) = exp(~ 2 1) exp(~ 2 ) exp(~ 1 7.) (3.17)

3.2 Matrix elements of finite rotation operators

The representation matrix of an operator « is defined as

ald) =>_[B)(BlalA) (3.18)

|A) are the orthonormal eigenkets for the representation. Eq. (3.18) gives for the
general rotation of an angular momentum eigenfunction

D(w)ljm) = > |5'm){(j'm'| D(w)|jm) (3.19)

j'm/
where the matrix elements are written
DY) (w) = (j'm!|D(w)|jm) (3.20)

Because D(w) only change the m quantum number j is always unchanged and Eq.
(3.20) is written DY) (w)
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Example: Construct D/? (a37).

DY = Gl e 1) expl= sl
= exp(—iam) (| exp(~'2.1,) jm) exp(~iym)
. 11 11 1 1
BAl55) =50 — Il =215~ 5)
11 1 1 11
(~iBl5) =~V — L)l - 5 = ~By )
11 1 1
(i1 5 5) = (515~ 5)
skl — Byl
(~iB2) 530 = (5)153)
Remembering exp(—%6J,) = 32, (7%5!‘]'”)’6 we see

i 11, X (=DkE)* 11
exp(—ﬁﬂJyNﬁ) = Y i

k=0

] 0 (_1)k(§)2k+1 1 1
)t T eEe 27

B.11 B.1 1

= COS(§) 55) + Slﬂ(§)\§ - 5)
and using the same approach
i 11, . B 11 .1 1
exp(—38y)l5 = 5) = —sin(5)l535) +eos(F)l5 — 3)

and we have for the full matrix

oy o exp(i(a+7)/2) cos(8/2) — explily — a)/2) sin(6/2)
Dm(“”‘( expli(c— 7)/2)sin(3/2)  explila +7)/2) cos(B/2) )

We noticed before that the Wigner function fo;,)m, i.e. the matrix elements of the
rotation operator D(w) is often referred to as the 2j 4+ 1-dimensional irreducible repre-
sentation of the rotation operator D(w). We realize that the matrix which correspond

to an arbitrary rotation operator can be brought to block-diagonal form, i.e.

(2 2)

ZT ZT ZT
¢z DY) o | 2j+1

8 8 8 &8
8 8 8 &8



3.2. MATRIX ELEMENTS OF FINITE ROTATION OPERATORS 25

Note that each smaller matrix can not be reduced further. Also note that DY) form a
group because

i) 6 =0 means that 1 is a member of the group.

ii) 6 — —60 means that the inverse is a member

iii) It is not possible to multiply oneself out of the group, i.e. any two

rotations can be replaced by a single rotation.

iv) The rotation matrix is unitary.

To exemplify the above discussion we investigate what happens to the product function

Y1511 ) [7252m2) (3.21)

under a rotation

D(w)yajima)|yaiomz) = 32 )yjimi)rejamy) DY, DY) (3-22)
mims2
Thus the product function transform according to the direct product of the two repre-
sentation matrices DU1) and DU2). We have a new representation DU x D) Note
that this is a “super matrix” with the elements (A X B);; gm = AixBim if the elements
of A and B are A;;, and By, respectively.
We also know that using

|12 J M) = Z Vg1 72mame) (Y1 jamame|yjije I M) (3.23)
mi+mo=M
we can form a linear combination of the product function |yj;jemims) that transform
according to D) (w), i.e. DUV x DU2) is reducible to block-diagonal form, the number
of basis functions have been reduced!
Before starting our discussion on tensor operators we note that there exist an
explicit formula for the general matrix element of the rotation operator, namely

(JM'|D(w)|JM) = D$)), (w) = exp(—i(aM’ + yM))(JM'| — iBJh|JM) (3.24)

where

N (T + MO(T = M(J + M)I(J — M))Y/?
(JM'| = iBJ,h|IM) = ;(—1) ((§++MI_)i)!(J_L(_;!t!&(_M_EI)!

% (COS é)2J+M’—M—2t(

5 ﬂ)?t—}—M—M’ (325)

sin —
2
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